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Abstract 

A neutron diffraction study of cubic CsPbX 3 (X = C1 
or Br) has been carried out over the temperature ranges 
325-623 K for CsPbCI~ and 408-673 K for CsPbBr 3. 
The temperature factors for the perovskite structure 
were derived following the method of Matsubara [Prog. 
Theor. Phys. (1975), 53, 1210-1211] which includes 
the use of cumulant coefficients to characterize anhar- 
monic components for an Einstein model. The potential 
parameters were then obtained using a numerical 
integration method to analyse the temperature depen- 
dence of the temperature factors. It was found that the 
anharmonic components in the potential were very 
large for the Cs and X atoms which undergo displace- 
ments on passing through the phase transitions at lower 
temperatures (321 K for CsPbC13 and 403 K for 
CsPbBr3). On the other hand, a harmonic potential is 
quite adequate to describe the thermal vibration of the 
Pb atoms, which are not displaced at the phase 
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transitions. Thus, the existence of the anharmonicity in 
the cubic phase seems to be anticipating the atomic dis- 
placement through the successive phase transitions for 
these substances. In addition to this anharmonicity, the 
temperature factors of the X atoms parallel to the (100) 
plane show an anomalous behaviour near the cubic to 
tetragonal phase-transition temperature, which should 
be connected with the softening of phonon mode at this 
phase transition. 

1. Introduction 

Cesium lead chloride, CsPbC13, and cesium lead 
bromide, CsPbBr3, have a cubic perovskite structure at 
high temperature and show similar successive struc- 
tural phase transitions from the viewpoint of atomic dis- 
placements through the phase transitions; that is, the 
first phase transition from the high-temperature side is 
due to the condensation of the M 3 mode, in which 
atomic displacement is allowed only for X (X = C1, Br) 
atoms and others are due to the condensation of the Z95 

:~This notation is following the representation given by 
Olbrychski (1963). 

© 1980 International Union of Crystallography 



8 ANHARMONIC THERMAL VIBRATIONS IN CUBIC CsPbX 3 

(R25-1ike) mode, in which displacement of Cs and X 
atoms is allowed (e.g. Hirotsu, 1971; Ohta, Harada & 
Hirotsu, 1973; Fujii, Hoshino, Yamada & Shirane, 
1974; Hirotsu, Harada, Iizumi & Gesi, 1974). In 
previous work on cubic CsPbCl 3, two of the authors 
(MS and JH) and others (Harada, Sakata, Hoshino & 
Hirotsu, 1976) have found no indication of several 
potential minima, as suggested by Moller (1959), but 
found that the perovskite model with anisotropic 
thermal vibrations was quite adequate to describe the 
thermal behaviour of this substance. They have, how- 
ever, pointed out that the temperature parameters Bll 
(Cs) and Bll (C1) are extremely large, while the other 
temperature parameters, B11 (Pb) and B33 (C1), are 
quite normal and strongly suggest the importance of 
considering anharmonicity for such large temperature 
parameters, which should play an important role 
through the phase transitions. Similar anomalies in the 
temperature parameters Bll (Cs) and B11 (Br) were 
found in CsPbBr 3 (Sakata, Nishiwaki & Harada, 
1979). 

In the analysis it has also been found that the 
generalized Debye-Waller factor expressions including 
anharmonicity for ABX3-type structures given by 
Nishiwaki, Sakata & Harada (1976) are not suitable as 
yet for the anomalously large temperature parameters 
B~1 (Cs) and B~ (Br). This fact indicates that the 
expressions for various average quantities in the power 
of the anharmonic potential coefficients are not valid 
for deriving the generalized Debye-Waller factors due 
to their unbounded nature, as pointed out by Mat- 
subara (1975b). In order to investigate the charac- 
teristic anharmonicity in such large temperature param- 
eters, structure analysis of cubic CsPbX 3 (X = C1 and 
Br) was carried out by neutron diffraction at some 
temperatures. The temperature dependence of the 
temperature parameters was analysed by a numerical 
integration method for the mean-square atomic 
displacement on the basis of an anharmonic potential. 
It was found that this procedure was successful for 
obtaining anharmonic potential parameters with 
reasonable accuracy but there exist two potential 
models for the halogen atoms, both of which describe 
very well the experimental data. 

In this paper we present a numerical integration 
method to analyse the temperature dependence of the 
temperature parameters and to obtain the potential 
parameters including anharmonicity in the Einstein 
model. The thermal properties of the constituent atoms 
obtained in these substances are discussed in connec- 
tion with their structural phase transitions. 

third- and fourth-order anharmonicity. Their methods, 
based upon the classical Einstein oscillator model, how- 
ever, adopted a serial expansion approximation in 
which it was assumed that the contribution of the 
anharmonicity in the temperature factor was much less 
than the harmonic contribution. As a result of this 
approximation, their equations are less satisfactory 
when there is more significant anharmonic vibration. In 
an extreme case, their equations could even be 
inadequate. In addition, the final equation includes a 
singular point if the isotropic fourth-order anharmon- 
ieity is considered. To avoid this deficiency, the 
generalized temperature factor within the limitation of 
the classical Einstein oscillator model is derived 
following Matsubara's (1975a,b) method. 

If the classical Einstein oscillator model is assumed, 
the generalized temperature factor may be expressed as 
the exponent of the cumulant expansion by definition, 

] (exp(iQuj)) = exp ~.v ((iQuj)")c ' (1) 

where Q is the scattering vector, uj the displacement of 
the j th  atom by thermal vibrations and e means the 
cumulants. General treatment of (1) leads to the results 
of Johnson (1970). In his method, however, the 
physical meaning of each coefficient is not always clear. 
In this paper, only the temperature factors of atoms in 
the perovskite structure will be considered. A wider 
consideration of the temperature factor following the 
present method will be given in a separate paper. 

From now on, it would be better to consider the 
temperature factors for the Cs and Pb atoms and that 
for the X atoms separately, because of the different 
symmetry of these atoms' sites. 

(i) Temperature factors for Cs and Pb atoms 

If a spherical potential is adopted, the appropriate 
potential for the atoms following Willis (1969) is 

V(u) = V 0 + "- u 2 + yu 4, (2) 
2 

where a and 7 are isotropic potential coefficients. For 
this potential, the temperature factor is written as 

(exp(iQu)) = exp[-~Q2(u2)] x (higher cumulants). (3) 

The second cumulant term is rewritten in the more 
convenient form 

exp[-~Q2(u2)] = exp[-B(sin 0/2)2], (4) 

where 

) 

2. Temperature factor 

The temperature factor expressions proposed by Willis 
(1969) and Dawson (1967) enable us to investigate the 

oo 

J u 4 exp ( - V / k  s T) du 
0 

, (5)  
c o  

.f u 2 exp ( -  V/k B T) du 
0 
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where k s is the Boltzman constant and T the tem- 
perature. The right-hand side of (4) is in exactly the 
same form as the ordinary isotropic temperature factor. 
The anharmonicity is taken into account using an 
anharmonic potential, e.g. (2), in (5). Clearly, these 
equations become exactly the same as the ordinary 
harmonic treatment when 7 = 0, i.e. 

(u 2) = 3k s T/a. (6) 

(ii) Temperature factor  for  the X atoms 

The temperature factor for the X atoms can also be 
obtained by the same procedures as in (i). Considering 
the anisotropy of the site, the relevant potential is 
written 

V( u ) =  V o + V,. + V±, (7) 

where the suffixes II and _1_ represent directions parallel 
and perpendiculr to the xy plane, respectively. 

a u~ + ru  4, V,. = 

t 

v± = ~ u~ + ~' u'~, (8) 

u~ = u, ~ + u~, 

uZ=u~ .  (9) 

For this potential, the temperature factor is expressed 
by 

(exp (iQu)) = x 1 2 2 e p( - IQ, , (u , , )  -- Q[ (u[ ) )  

x (higher cumulants), (10) 

where 

Q~ = Q2 + Qz2, 

Q ~ = Q ~ .  (11) 

Finally, the second cumulant term is expressed as 

exp (-~Q,,(u,,)l 2 2 _ Q~(u[) )  = e x p [ - ( B l ~ / 4 a  2) (h E + k 2) 

_ (Ba3/4a 2)/2], (12) 

where 

f u] e x p ( - V , , / k  s T) du,, 
B,, = 4n2(u~) = 4n 2 f u,, exp (-V, ,  /ks T) du,,' (13) 

f u~ e x p ( - V ± / k  B T)du± 
B33 = 8 ~ 2 ( u  2 )  = 8 ~  2 

f exp (-- V±/k  s T) du ± 
, (14) 

and a is the lattice constant. The right-hand side of (12) 
is in exactly the same form as the conventional 
harmonic anisotropic temperature factor and the 
anharmonicity effect on the B values is given in (13) 
and (14). If the fourth-order anharmonic term in the 

potential can be ignored, these equations also become 
exactly the same as the traditional harmonic tem- 
perature factors, i.e. 

(u~) = 2k B T/a,  (15) 

(u=) = k B T /a '  (16) 

According to the present derivations of B values, the 
final equations show that harmonic and anharmonic 
potential coefficients can be determined separately from 
the temperature dependence of the B value without 
knowing higher cumulants effects. 

3. Experimental 

The single-crystal specimens of CsPbCI 3 and CsPbBr 3 
used in this study each had spherical shape with 
diameters 7 and 5 mm, respectively. 

An electric lamp-shaped furnace was used in this 
study with double-wall heat isolation. The temperature 
was controlled "by a SCR temperature controller and 
kept within 0.5 K even at the highest temperature, 673 
K. The first transition temperatures from the high- 
temperature side, which are from cubic to tetragonal 
transitions for both substances, were confirmed by the 
observation of the appearance of ½ 310 superstructure 
reflexions. In order to obtain the temperature depen- 
dence of the B values of each atom: (1) for CsPbCla, 49 
independent integrated intensities of Bragg reflexions 
were measured at the following nine temperatures: 325, 
328, 333,373, 423, 473,523, 573 and 623 K, from just 
above the cubic-tetragonal transition temperature; (2) 
for CsPbBr 3, 33 intensities, apart from a few exceptions, 
at eight temperatures: 408, 413, 423, 448, 473, 523, 
573 and 673 K. In the case of CsPbC13, all reflexions of 
which the sum of the square of indices is less than 42 
(h 2 + k 2 + l 2 < 42) were measured at any temperature. 
All measurements were carried out on a four-circle 
neutron diffractometer at AERE Harwell. 

4. Data analysis 

Data analysis was carried out in two steps. In the first 
step, integrated Bragg intensity data sets were analysed 
refining the B value of each atom using the Harwell 
T A I L S  computer program in which the required 
possible corrections for extinction, TDS (thermal 
diffuse scattering) and absorption can be made. In the 
second step, the potential parameters, a and ~,, for each 
atom were determined using a least-squares refinement 
in which the single integration of (5), (13) or (14) was 
carried out by a numerical method. 

The temperature factors determined in the first step 
were treated as the data to determine the potential 
parameters. However, it is not necessary to divide the 
analysis into two steps, since the potential parameters 
could be determined from the Bragg intensities data 
directly. 
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O) Analysis by TAILS 

In the TAILS program, the calculated intensity is 
given by 

I c = sA~, (y + a)lFcl 2 cosec 20, (17) 

where s is the scale factor, A u is the absorption factor, y 
the extinction factor, a the TDS factor and F c the 
calculated structure factor. Since there are no signifi- 
cant differences between the values of the temperature 
factors obtained using the Cooper & Rouse (1970) 
theory and the Becker & Coppens (1974a,b) theory for 
extinction (Sakata, Cooper, Rouse & Willis, 1978), it is 
not a serious problem which theory should be used. In 
this work, the Cooper-Rouse formalism was used. The 
details of TAILS can be found elsewhere (e.g. Cooper 
& Rouse, 1971). 

In the final stage of this analysis, the fourth cumulant 
terms which are represented as exp[-h~hjh k hlDijkl], 
were considered as well as the effective domain radius 
r* in the extinction correction. The final results in this 
analysis are given in Table 1 for CsPbCl 3 and Table 2 
for CsPbBr3.* In the tables of experimental data, the 
observed and calculated intensities are listed together 
with the standard deviations of the observed intensities 
based on counting statistics and the values of the extinc- 
tion and TDS factors for all reflexions observed. In 
cases for which the counting statistics are better than 
1% of the observed intensity, this value was adopted as 
a standard deviation. 

* Lists of structure factors for CsPbCI 3 and CsPbBr 3 have been 
deposited with the British Library Lending Division as Supple- 
mentary Publication No. SUP 34850 (6 pp.). Copies may be ob- 
tained through The Executive Secretary, International Union of 
Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 

The values of the effective domain radius for the 
different temperatures are in excellent agreement with 
one another in both cases, confirming the self- 
consistency of the analysis, although the value of the 
effective domain radius at a given temperature is not 
well defined for CsPbBr 3 because very few reflexions 
are affected significantly by extinction in this crystal. 

An attempt was made to determine all the fourth 
cumulant coefficients except for those of the Pb atoms 
which could not reasonably be expected to be signifi- 
cant, judging from the much smaller B value. Never- 
theless, these coefficients could not be well determined 
except for the anisotropic fourth cumulants Dl122(C1 ) in 
CsPbCl 3. This fact shows that the other fourth 
cumulant terms are not significant enough to be deter- 
mined, giving a large standard deviation of the 
coefficients, often larger than the coefficient value itself. 
In addition, there is a strong correlation between second 
and fourth cumulant coefficients of the same atom. For 
this reason, the analysis including the fourth-order 
cumulants gives a worse reliability index for most cases. 
So, even in the case when the standard deviation is 
smaller than the coefficient value, we conclude that the 
fourth cumulant term is not significant because of a 
worse reliability index. It might be possible to deter- 
mine the fourth cumulant coefficients from measure- 
ments of very high Q reflexions using very short wave- 
length incident neutrons. It is, however, not our present 
purpose and it is concluded that the fourth cumulant 
terms of the temperature factor except for D1~22(C1 ) can 
be ignored without significant errors in the present case. 

The obtained B values are plotted against the 
temperature in Fig. 1 for CsPbCl 3 and Fig. 2 for 
CsPbBr 3. The calculated B values from the harmonic 

Table 1. Results of  the least-squares refinement ofCsPbCl 3 using the TAILS program 

T(K) 325 326 333 373 423 473 523 573 623 

B(Cs) ( / i ~ 9  6.17+_0.09 6.23+-0.10 6.27+0.10 6.88+-0.09 7.55+-0.10 8.13+0.08 8.89+0.08 9-65+0.13 10.1 +0.11 
B(Pb) 1.98 + 0.04 1.98 +- 0.04 2.02 _+ 0.04 2.27 + 0.03 2.52 -4- 0.04 2.73 _+ 0.03 3.08 + 0.03 3.36 _+ 0.04 3.67 + 0-03 
B~(CI) 14.6 +_0.17 14.7 +_0.18 14.7 +0.16 14.6 +0-14 14.6 +0.13 14.9 +0.12 15.3 +0.11 15.8 +-0.14 16.3 _+0.12 
833(C1) 1-96 _+ 0.04 1.97 + 0.05 1.99 + 0.05 2.20 + 0.04 2.54 + 0.04 2.79 + 0.03 3.06 + 0.04 3-39 + 0.04 3-68 +_ 0.03 
r*x 106 (mm) 0.88+-0.11 0.92+_0.13 0-89+_0.12 0.89_+0.11 0.98_+0.11 0.79+0.09 0.87_+0.07 0.86_+0-11 0-92+0-09 
D,~22(CI)t -11.9 +-2.0 -12.3 _+2.1 -11.0 +2.0 -10.2 -+1.8 -10.2 +_1.6 -9.1 +_1.5 -8.2  +1-3 -8.3  +_1.7 -9-0 + 1.4 
R (%) 2.26 1.79 1.80 1.80 1-26 1.50 1.01 1.11 0.99 
wR 4.21 4.54 4.18 4.16 4-04 3-29 3.10 3-57 1-47 

t Fourth cumulant coefficient. 

Table 2. Results of the least-squares refinement ofCsPbBr 3 using the TAILS program 

T (K) 408 413 423 448 473 523 573 673 

B(Cs)(A z) 9 . 8 3 + 0 . 2 6  9 . 9 0 + 0 . 2 6  10.0 + 0 . 2 2  10.4 + 0 . 1 9  10.6 + 0 . 2 9  11.3 + 0 . 2 8  12.0 +_0.34 13.5 +_0.36 
B(Pb) 2.96 + 0.10 2.95 + 0.10 2.98 + 0.08 3.16 + 0.06 3.34 + 0.10 3.72 -+ 0.10 4. I0 + 0.11 4.87 +- 0.12 
B~,(Br) 18.6 + 0 . 2 8  18.5 +0-33  18.0 + 0 . 2 4  18.0 + 0 . 1 8  18.0 + 0 . 2 9  18.4 _+0.29 18.9 _+0.34 19.8 _+0.33 
B33(Br) 2.03_+0.19 2.13_+0.20 2.14_+0.17 1.94+-0.14 2.01_+0.20 2-23_+0-21 2 .58+-0 .23  3 .44+-0 .23  
r* x l0 s (mm)t  0.66 _+ 0.40 0.67 + 0.32 0.66 + 0.29 0.66 + 0.20 0.60 + 0.33 0.65 _+ 0-32 0.74 _+ 0.30 0.69 +_ 0.30 
R (%) 3.34 3.68 2.74 2.28 2.95 2.89 2.69 2.69 
wR 4.71 5.19 3.99 3.26 4.77 5.13 5.46 5.13 

t Effective domain radius for extinction correction. 
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approximation are shown by a straight dashed line in 
the figures. The normalizations between observation 
and calculation were done at 333 K for B(Cs), 373 K 
for B(Pb) and Baa(C1), 473 K for B~(C1) in CsPbC13 
and 423 K for B(Cs) and B(Pb),  473 K for Blx(Br ) and 
B33(Br) in CsPbBr 3. At a glance, it can be seen from the 
figures that the harmonic approximation is not always 
adequate to explain the B values obtained by the 
analysis. In order to interpret these discrepancies 
between observed and calculated temperature factors 
by the harmonic approximation, a further analysis of B 
values has been carried out considering anharmonicity. 

(ii) Analysis of B values 

The B values were analysed by (5), (13) or (14) using 
another least-squares program and the potential param- 
eters a and y were refined. In the analyses of BI~(C1), 
B1~(Br) and B33(Br), only four B values at higher 
temperatures were used. The reason is that these B 
values show rather anomalous behaviour near the 
phase transition and the present temperature factor 
expression does not cover these anomalies. These, 
therefore, have to be treated separately and will be 

discussed qualitatively later. In all other cases, all the B 
values obtained were used in the analyses. 

The numerical integrations in (5), (13) and (14)were 
checked by calculating the harmonic case where the 
integrations can be solved analytically and the exact 
answers are known. If the integral range b which 
replaces the infinite range in the numerical calculation is 
big enough, say 2 A, the numerical calculation gives 
exactly the same value as the correct answer. In the 
actual calculations, the integral ranges were always 
checked by confirming the convergence of B values. As 
an example of this, the convergence of B(Cs) in 
CsPbC1 a at various temperatures is shown in Fig. 3 
where a = 0.419 x 10 -]9 J A -2 and y = 0.109 x 10 -19 
J /k -4. As long as a closed potential is used, it is no 
problem to determine the integral range and to carry 
out the integrals numerically. 

The final results of this refinement are given in Table 
3. All the analyses give very low-weighted reliability 
indices wR. For the refinement of Baa(Br), sixth-order 
anharmonicity was taken into account to make the 
potential close, that is, the following potential was used 
instead of V± in (8), 

( l  t 

Vi=--~-u 2 + 7 ' u  4 + ~u 6. (18) 

B {Cs] 
/ /  

/ 

/ / / / ~  

Anharmonlc 

Harmonic 

" i , [ I I I I 
323 373 423 473 523 573 623 

(a) T (K) 

B [Pb} 

Tt 

- l - - - ~ : ~ "  

- -  Anhormonlc 

. . . .  Hormonlc 

I I I I I I I 
323 373 423 473 523 573 623 

( b )  T(K)  

B,, (CI; / 
/ 

/ 

/ 

z 
6# . . . .  E__ - o -  / 

/ / Harmonic / 
I I I I i I I 

323 373 423 473 523 573 623 

(c) T(KI 

B33 (CI )  

( .~=1 

,t 

Anharmonlc 

1 . . . .  Harmonic 

I I I I I I I 
323 373 423 473 523 573 623 

(d) TIKI 

Fig. 1. (a) The temperature dependence of B values for Cs atoms in CsPbCl a. The open circles are refined values, solid line is the calculated 
values using the anharmonic potential in Table 3. The dashed line is calculated values using a harmonic potential. It represents the cubic 
to tetragonal phase-transition temperature. (b) The temperature dependence of B values for Pb atoms in CsPbCI r (c) The temperature 
dependence of B values parallel to (100) plane for C1 atoms in CsPbC1 r The dotted line near T c is the guide-of-eye line. (d) The tempera- 
ture dependence of B values perpendicular to (100) plane for CI atoms in CsPbCI 3. 
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F r o m  the table it is very obvious that  the harmonic  12 
potential is perfectly adequate  for the Pb a tom in 
CsPbBr  3. For  the potentials of  V(Pb)  and V±(C1) in 
CsPbC13 it is not easy to visualize the significance of  the 
anharmonici ty ,  al though the fourth-order  anharmonic  
coefficients are well determined. So both harmonic  and 
anharmonic  potentials of  Pb a toms are shown in Fig. 4. 8 
It is very clear f rom the figures that  the anharmonic i ty  
of these potentials is not significant. For  example,  the 
contribution of  anharmonic i ty  in these potentials is less 
than 3% at the position of  the root -mean-square  
displacement at 623 K, the highest tempera ture  studied. 

~ 4  
In the figure, the range of  measurement  is equivalent to 
the energy at the root -mean-square  displacement  of  the = 

harmonic  potential,  that  is, (3/2)k  s T. 

The V, (CI) and V, (Br) potentials are not single mini- 
m u m  potentials, as seen in Fig. 5(a) and (b) in dotted 
lines. It should be noticed that  the potential barrier 0 
between the minima is much smaller than  the mean 
energy of  thermal  vibration (3/2)k s T. It would be, 
therefore, reasonable to expect the existence of  another  
possible potential which can also explain the tem- 

623 K 

573  K 

523 K 

473  K 

423  K 

373  K 

325  K 

0 .0  0 .5  1.0 1.5 2 .0  2 .5  3 .0  
INTEGRAL RANGE (A) 

Fig. 3. The convergence of the numerical integral in (5). The B 
values are plotted against integral range. 

BICs) 

B u (Br} 

/ / / t  

T t / /i/////It~ 
/ / ~ ~  Anhofmonic 

HQrmonic 

/ 

l ~ | r I I 

423 473 523 573 623 673 

Tt 

/ 

O" -0-- / /  

/ 
/ 

/ 

/ 
/ 

/ 
/ 

Anhorm0ntc 

- -  - -  Harmonic 

BIPb) 

Ba~(Br) 
(~ =) 

. .0 "  

..coO" 

. . . . .  Harmonic 

Tt 

I I I I I I 

423 473 s23 s~3 623 673 
(b) T(K) 

T t 

- -  Anhofmomc 

~16 I I i I I i 

423 473 523 ' 573, 623 673 0 I I I I I I 
423 473 523 573 623 673 

T (K) 
(e) (d) T (K) 

Fig. 2. (a) The temperature dependence of B values for Cs atoms in CsPbBr 3. The open circles are refined values, solid line is calculated 
values using the anharmonic potential in Fig. 5. The dashed line is calculated values using a harmonic potential. It represents the cubic to 
tetragonal phase-transition temperature. (b) The temperature dependence of B values for Pb atoms in CsPbBr 3. The best fit potential is 
harmonic. (e) The temperature dependence of B values parallel to (100) plane for Br atoms in CsPbBr 3. The dotted line near T t is the 
guide-of-eye line. (d) The temperature dependence of B values perpendicular to (100) plane for Br atoms in CsPbBr r The dotted line 
near T~ is the guide-of-eye line. 



perature dependence of the observed Bll(Cl ) and 
B11(Br). In order to investigate another possible 
potential, higher-order anharmonicities were con- 
sidered and it was found that the following simple 
spherical potentials can also explain the observed B 
values; 

V,, = r/u 6 for Cl, 

Vt, = Zu~ for Br. (19) 

Table 3. One-particle potential parameters determined 
by least-squares analysis 

The results of this analysis are also given in Table 3 
(bottom row) and the potentials are drawn in Fig. 5 in 
full lines. From the wR values, it is not possible to 
conclude which potential is more appropriate, although 
the shape of the bottom of the potential is very different. 

These two kinds of potentials give the same struc- 
ture factors for all the reflexions so that there would be 
no way to distinguish these potentials even from 
Fourier analysis. 

Cs: 

Pb: 

XI 1 

X± 

Xl i 

2.0 

CsPbCl  3 CsPbBr  3 

a 0 .419 (1) 0.181 (7) 
y 0 .109 (1) 0 .128 (35) 
wR 0 . 7 3 %  0 . 7 7 %  

a 1.742 (2) 1.536 (3) 
7 O. 138 (23) 0 .000  (3) 
wR 1-26% 1.08% 

a - 0 . 3 0 0  (1) - 0 . 3 5 8  (10) 
7 0 .300  (1) 0 .256 (5) 
wR 0 . 3 2 %  0 . 1 9 %  

a '  1.784 (1) 3 .024 (16) 
7' 0.128 (27) - 1 . 2 2 2  (22) 
t/' - 0 .319 (5) 
wR 0 . 6 8 %  1 .44% 

q O. 159 (1) - 
x - 0.088 (1) 
wR 0.28% 0.27% 

Units: ct(10 -19 J /~-2), 7(10-19 j A-4), ~(10-19 j A-6), 
Z(10-19 j/~-7). 
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Fig. 4. The harmonic and anharmonic potentials for Pb atoms. As 
the range of measurement, (3/2)k n T is used. This energy corre- 
sponds to the energy when the particle is displaced at the root- 
mean-square displacement in a one-particle harmonic potential. 

5. Fourier analysis 

As shown in the least-squares analysis, the fourth-order 
cumulant coefficient D1~== was refined for the C1 atom 
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Fig. 5. The two alternative anharmonic potentials for C1 and Br 

atoms in the direction parallel to ( ]00)  plane. 
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in CsPbC13, although its standard deviations are rather 
large compared with other parameters in Table 1. This 
fact indicates that there exists anisotropic thermal 
vibrations of  the CI atom in the (100) plane. In order to 
confirm such anisotropy in the thermal vibration, three- 
dimensional Fourier and difference Fourier syntheses of  
CsPbCI 3 were carried out at Z = 0 .0  and 0.5 sections 
for all the temperatures studied. The contour maps of  
the Fourier syntheses at Z = 0 .0  and 0.5 at 325 K 
where the thermal vibration is the smallest, are given in 
Fig. 6(a) and (b). The resolution of  the Fourier synthesis, 
r, which is 0 .093a  0 at all temperatures, is very slightly 
better than the previous work, r = 0 .095a  0 (Harada, 
Sakata, Hoshino & Hirotsu, 1976). The resolution is 
also better than the root-mean-square displacement, 
<U2> 1/2 of Cl atoms parallel to the (100) plane. There is 
no inherent difference between the two results; there is 

no indication of  the existence of a hump among the 
potential minima for the C1 atoms, which is larger than 
(3/2)k B T. It is, therefore, concluded that the F,,(CI) 
[and probably V,,(Br)] potentials are very anharmonic 
ones with a single minimum. This result contrasts with 
the same kind of analysis for n-Agl by Cava, Reidinger 
& Wuensch (1977) in which the disordering of Ag ions 
was clearly shown on a Fourier synthesis. 

In the difference Fourier synthesis, the contributions 
of  the second cumulant term in the temperature factor 
are subtracted from the observed intensity data for all 
kinds of  atoms. The difference Fourier maps at Z = 0-0 
are shown at two temperatures, 328 and 573 K, in Figs. 
7(a) and (b), respectively. The four small peaks found 
around the equilibrium positions of C1 atoms indicate 
clearly the existence of  the anisotropic fourth cumulant 

1.o . . . . . . . .  

0.9 

0.8 

0 .7  

0.6 

0.5 

0.4 

0 , 5  

0.2 Reso Iut , on 

0 . 0  ' 
o.o o.~ 022 o13 o. ,  ols 026 oi? 028 019 1.o 

(a) 

1.0 . . . . . . . . . . . . . . . . . .  

0 .8  
° 

0.7  

@ 0 . 5 '  

0 .4  

0 .3  

0.2 L t 

0.1 

0.0 
0 . 0  0 .  I 0 .2  0 .5  0 .4  0 .5  0 .6  0 . ?  0 . 8  0 .9  1 . 0  

(b) 
Fig. 6. Three-dimensional Fourier syntheses for cubic CsPbC! 3 at 

325 K. Sections at Z = 0.0 and Z = 0-5 are shown in (a) and (b), 
respectively. Contour intervals of0.15 (10-" mm/~-3). 
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A-3). 
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coefficient of the CI atoms, D1122(C1), as expected from 
the least-squares analysis. The density of these peaks 
increases with decreasing temperature towards the 
phase transition, which is also consistent with the least- 
squares analysis as seen from Table 1. Therefore, the 
potential of the C1 atom has anisotropy in the (100) 
plane and is slightly shallow along the [010] and [001] 
directions. 

It should be noticed, however, that these four peaks 
found from the difference Fourier map do not show any 
implication of the existence of a multiminimum poten- 
tial. The condition for them to be a structural disorder 
would be a density maxima on a Fourier map, not on a 
difference Fourier map only. There is also no indication 
of disordering of the Cs atoms suggested previously by 
Moiler (19 5 9). 

Fig. 5 for both kinds of atoms. In contrast, the thermal 
vibrations of the Pb atoms are quite normal and are 
well described by harmonic potentials. It is very 
interesting to notice that the Cs and halogen atoms, 
which are located in anharmonic potentials in the cubic 
phase, displace their positions through the successive 
phase transitions. 

In Figs. l(c) and 2(c), it should also be noticed that 
near the phase transitions the temperature parameters 
for only the halogen atoms deviate from the tem- 
perature dependence which is expected on the basis of 
the anharmonic potentials determined by the present 
analysis. These deviations must be closely related to the 
fact that only halogen atoms are involved in the phase 
transitions from cubic to tetragonal structure. 

6. Discussion 

The potential coefficients of atoms in a crystal including 
anharmonicity are usually determined from the analysis 
of the precise Q dependence of the integrated Bragg 
intensities obtained at one particular temperature. In 
this analysis, it is essential to decouple the higher-order 
term for Q in the temperature factor from the second- 
order term. However, this procedure is not always easy 
to do owing to the existence of correlation between the 
second- and the fourth-order potential coefficients in the 
least-squares refinement. In an early study of anhar- 
monicity by Willis (1969), the anharmonic potential 
coefficients were determined from the temperature 
dependence of several Bragg intensities. In order to 
avoid such correlation problems, the method of 
analysing the temperature dependence of the B values 
has been employed by previous workers (Mair, Barnea, 
Cooper & Rouse, 1974; Harada, Suzuki & Hoshino, 
1976). In the present study the analysis has been done 
in two stages, that is, the refinement of the B values at 
several temperatures and the refinement of potential 
coefficients on the basis of the temperature dependence 
of the B values. It is possible to extend the present 
method to refining the potential coefficients in a single 
stage directly from all the temperature-dependent Bragg 
intensity data. 

Thermal vibrations in CsPbCI 3 and CsPbBr 3 were 
found to have very similar characteristics. The mean- 
square displacements of Cs atoms and halogen atoms 
are anomalously large. Besides, halogen atoms show 
extreme anisotropy. In spite of this they show much less 
temperature dependence throughout the whole range of 
temperature investigated, as shown in Figs. l(a), (c) 
and 2(a), (c). Such characteristics of the thermal 
behaviour are attributed to the anharmonic potentials 
whose shape resembles the square-well type, as seen in 
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